Research-based instruction design for Feynman diagrams

Motivation and Context

- Feynman diagrams (FD) as one of the most popular forms of representation in particle physics
- Long lasting debate about its usage in physics education (Passon et al., 2018)
- **Research-based instruction design** for a component as a MOOC on particle physics (currently under development at CERN)

Theoretical Background

10/20

- FD example for representation dilemma (Rau, 2017)
- **Social Semiotics** (cf. Airey & Lindner, 2017): disciplinary vs. pedagogical affordance
- Representations with high disciplinary affordance need **"unpacking**" (Fredlund et al., 2014)
- **Eye Tracking** as tool to inform instruction design (Jarodzka et al., 2017)
- Model of educational reconstruction(Duit et al., 2012): educational use vs. possible challenges

First results

Expert Interviews

FF1) Which opportunities for physics education on high school level is connected to Feynman diagrams according to experts?

FF2) Which challenges are connected to teaching Feynman diagrams to high school students?

Students Eye Tracking Study

FF1) How is the visual attention of students distribute when reading Feynman diagrams to learn about laws and interaction conservation particles?

FF2) Which elements make a Feynman diagram more accessible for students?

Research-based Assessment-Instrument for **Particle Physics**

- Evaluation of the MOOC
- Based on expert interviews: concepts in particle physics which are connected to teaching of FD

Expert Eye Tracking Study

Research-based Instruction Design

hm

- Based on model of educational reconstruction
- Informed by interviews and eye tracking studies
- Test of effectiveness with high school students at CERN

für Bildung

